Centromere fission, not telomere erosion, triggers chromosomal instability in human carcinomas
نویسندگان
چکیده
The majority of sporadic carcinomas suffer from a kind of genetic instability in which chromosome number changes occur together with segmental defects. This means that changes involving intact chromosomes accompany breakage-induced alterations. Whereas the causes of aneuploidy are described in detail, the origins of chromosome breakage in sporadic carcinomas remain disputed. The three main pathways of chromosomal instability (CIN) proposed until now (random breakage, telomere fusion and centromere fission) are largely based on animal models and in vitro experiments, and recent studies revealed several discrepancies between animal models and human cancer. Here, we discuss how the experimental systems translate to human carcinomas and compare the theoretical breakage products to data from patient material and cancer cell lines. The majority of chromosomal defects in human carcinomas comprises pericentromeric breaks that are captured by healthy telomeres, and only a minor proportion of chromosome fusions can be attributed to telomere erosion or random breakage. Centromere fission, not telomere erosion, is therefore the most probably trigger of CIN and early carcinogenesis. Similar centromere-telomere fusions might drive a subset of congenital defects and evolutionary chromosome changes.
منابع مشابه
Types, stability, and phenotypic consequences of chromosome rearrangements leading to interstitial telomeric sequences.
Using in situ hybridisation, we identified interstitial telomeric sequences in seven chromosomal translocations present in normal and in syndromic subjects. Telomeric sequences were also found at the centromeric ends of a 4p and a 4q caused by centric fission of one chromosome 4. We found that rearrangements leading to interstitial telomeric sequences were of three types: (1) termino-terminal r...
متن کاملAnalysis of gene expression patterns and chromosomal changes associated with aging.
Age is the largest single risk factor for the development of cancer in mammals. Age-associated chromosomal changes, such as aneuploidy and telomere erosion, may be vitally involved in the initial steps of tumorigenesis. However, changes in gene expression specific for increased aneuploidy with age have not yet been characterized. Here, we address these questions by using a panel of fibroblast c...
متن کاملExtensive telomere erosion in the initiation of colorectal adenomas and its association with chromosomal instability.
BACKGROUND Telomere shortening, dysfunction, and fusion may facilitate the acquisition of large-scale genomic rearrangements, driving clonal evolution and tumor progression. The relative contribution that telomere dysfunction and/or APC mutation play in the chromosome instability that occurs during colorectal tumorigenesis is not clear. METHODS We used high-resolution telomere length and fusi...
متن کاملBreakage-fusion-bridge over and over again
*Correspondence to: Karel H.M. van Wely; Email: [email protected] The acquisition of massive but localized chromosome translocations, a phenomenon termed chromothripsis, has received widespread attention since its discovery over a year ago. Until recently, chromothripsis was believed to originate from a single catastrophic event, but the molecular mechanisms leading to this event are yet to ...
متن کاملThe possibility of latent centromeres and a proposed nomenclature system for total chromosome and whole arm translocations.
Translocations involving entire chromosomes or whole chromosome arms may not necessarily require deletion of a centromere. Conceivably, in the process of centromeric or telomeric fusion or of fusion of a centromere with a telomere, centromeric inactivation may occur, thus preserving both centromeres--one functional, the other latent--in the resultant translocation chromosome. If such latent cen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 32 شماره
صفحات -
تاریخ انتشار 2011